Hopfield
networks




Hopfield networks

o Another type of neural network comprising n nodes
o Every node is connected to every other node

o The connection between each two nodes is bidirectional
> The forward information flow both from node x; to x; and x; to x; Hopfield

> Similarly, backpropagation both from node x; to x; and x; to x; Q
> Cycles in the information propagation O/ \

o They were early neural net models for learning memories \74

o Specifically, implemented with the Hebbian rule for O/ O
‘associative learning’
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Hoptfield vs feedforward networks

o Feedforward networks have connections that make up for acyclic graphs
o Feedback networks are networks that are not feedforward

o Hopfield networks:
> Fully connected feedback networks Feedforward Hopfield

- Symmetric weights, no self-connections Q
> Associative (Hebbian) learning O/
o No separation of hidden vs visible '\ \
> Neurons (nodes) update themselves
> Based on all other neurons

Information Theory, Inference, and Learning Algorithms, D. MacKey
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https://www.inference.org.uk/itprnn/book.pdf

Hebbian learning

o Positively correlated neurons reinforce each other’s weights
dWl' j
dt

o Associative memories < No supervision < Pattern completion

& correlation (xi;xj)

Time t Winnie the Hopfield Timet+ 1
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Hoptield network

o Binary Hopfield defines neuron states given neuron activation a

1 a; =0
xizh(ai)={_1 ai<0

o Continuous Hopfield defines neuron states given neuron activation a
x; = tanh(a;)

o Note the feedback connection! @/
> Neuron x, influences x5, but x; influences x; back

o Who influences whom first? \ /@
> Bither synchronous updates: a; = }.; w;;x;

> Or asynchronous updates: one neuron at a time (fixed or random order)
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Hopfield memory

o Network updates x; € {—1, 1} till convergence to a stable state

o Stable means x; does not flip states no more
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- Recurrent inference cycles
> Not ‘single propagation’
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Figure 42.3. Binary Hopfield
network storing four memories.
(a) The four memories, and the
weight matrix. (b=h) Initial states
that differ by one, two, three, four,
or even five bits from a desired
memory are restored to that
memory in one or two iterations.
(i-m) Some initial conditions that
are far from the memories lead to
stable states other than the four
memories; in (i), the stable state
looks like a mixture of two
memories, ‘D’ and *J'; stable state
(j) is like a mixture of “J" and ‘C’;
in (k), we find a corrupted version
of the ‘M’ memory (two bits
distant); in (1) a corrupted version
of *J7 (four bits distant) and in
(m), a state which looks spurious
until we recognize that it is the
inverse of the stable state (1).
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Energy function

o Hopfield networks minimize the quadratic energy function
fo(x) = Z WijXiXj + Z bx;
L] i

o Lyapunov functions are functions that
> Decreases under the dynamical evolution of the system

> Bounded below

o Lyapunov functions converge to fixed points

o The Hoptfield energy is a Lyapunov function
> Provided asynchronous updates

> Provided symmetric weights
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Learning algorithm

w=x *x ; # initialize the weights using Hebb rule
for 1 = 1:L # loop L times
for i=1:1 #
w(i,i) = 0 ; # ensure the self-weights are zero.
end #
a =X *w 5 # compute all activatioms
y = sigmoid(a) ; # compute all outputs
e =t -y ; # compute all errors
gw = X’ * e ; # compute the gradients
gw = gw + gu’ 5 # symmetrize gradients

W =w+ eta * ( gw - alpha * w ) ; # make step

endfor
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Continuous-time continuous Hopfield network

o We can replace the state variables with continuous-time variables

o At time t we compute instantaneous activations

a;(t) = z wi;x;(t)
J

d _ 1 h
—x;(t) = == (;(8) — h(ay)

\
o The neuron response is governed by a differential equation \
o For steady a; the neuron response goes to stable state \¥

l.gl UNIVERSITY OF AMSTERDAM EFSTRATIOS GAVVES - UVA DEEP LEARNING COURSE -9 VISLab




Hopfield networks for optimization problems

o Optimize function under constraints
o The stable states will be the optimal solution

o Weights must ensure valid and optimal solutions

Figure 42.10. Hopfield network for

Place in tour Place in tour I 2 3 4 solving a travelling salesman
1 2 3 4 1 2 3 4 410 O O O problem with K =4 cities. (al,2)
411 @ O O O 4|0 @ O O | Two solution states of the
) ) B| O—C—0O 16-neuron network, with activites
City 3/ O © O @ City 3| O O @ O cl o (lj o 0 represented by black = 1, white =
cClO @ O O clo o 0 e 0; and the tours corresponding to
D| O O O these network states. (b) The
DO O @ O ble O O O (b) negative weights between node B2
and other nodes; these weights
B B I 2 3 4 enforce validity of a tour. (c) The
P — O\ ) O/ Q 4l 0 0 0 O negative weights that embody the
distance objective function.
- @) /o~ Ob B| O L. O O
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Hopfield networks is all you need

o Retrieving from stored memory patterns

o Update rule as in the attention mechanism in transformer networks

.........

Ramsauer et al., 2020
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