Hopfield networks

Hopfield networks

- Another type of neural network comprising *n* nodes
- Every node is connected to every other node
- The connection between each two nodes is bidirectional
 - The forward information flow both from node x_i to x_j and x_j to x_i Hopfield
 - Similarly, backpropagation both from node x_i to x_j and x_j to x_i
 - Cycles in the information propagation
- They were early neural net models for learning memories
- Specifically, implemented with the Hebbian rule for 'associative learning'

Hopfield vs feedforward networks

- Feedforward networks have connections that make up for acyclic graphs
- Feedback networks are networks that are not feedforward
- Hopfield networks:
 - Fully connected feedback networks
 - Symmetric weights, no self-connections
 - Associative (Hebbian) learning
- No separation of hidden vs visible
 - Neurons (nodes) update themselves
 - Based on all other neurons

Information Theory, Inference, and Learning Algorithms, D. MacKey

Hebbian learning

- Positively correlated neurons reinforce each other's weights $\frac{dw_{ij}}{dt} \propto \text{correlation}\left(x_i, x_j\right)$
- Associative memories ⇔ No supervision ⇔ Pattern completion

Hopfield network

Binary Hopfield defines neuron states given neuron activation a

$$x_i = h(a_i) = \begin{cases} 1 & a_i \ge 0 \\ -1 & a_i < 0 \end{cases}$$

Continuous Hopfield defines neuron states given neuron activation a

$$x_i = \tanh(a_i)$$

- Note the feedback connection!
 - Neuron x_1 influences x_3 , but x_3 influences x_1 back
- Who influences whom first?
 - Either synchronous updates: $a_i = \sum_j w_{ij} x_j$
 - Or asynchronous updates: one neuron at a time (fixed or random order)

Hopfield memory

- Network updates $x_i \in \{-1, 1\}$ till convergence to a stable state
 - Recurrent inference cycles
 - Not 'single propagation'
- \circ Stable means x_i does not flip states no more

	moscowrussia
	limaperu
	londonengland
	tokyojapan
(a)	edinburgh-scotland
	ottawacanada
	oslonorway
	stockholmsweden
	parisfrance

Energy function

Hopfield networks minimize the quadratic energy function

$$f_{\theta}(\mathbf{x}) = \sum_{i,j} w_{ij} x_i x_j + \sum_{i} b_i x_i$$

- Lyapunov functions are functions that
 - Decreases under the dynamical evolution of the system
 - Bounded below
- Lyapunov functions converge to fixed points
- The Hopfield energy is a Lyapunov function
 - Provided asynchronous updates
 - Provided symmetric weights

Learning algorithm

```
w = x' * x; # initialize the weights using Hebb rule
for l = 1:L # loop L times
      for i=1:I
        w(i,i) = 0; # ensure the self-weights are zero.
      end
      a = x * w; # compute all activations
      y = sigmoid(a);  # compute all outputs
      e = t - y; # compute all errors
      gw = x' * e; # compute the gradients
      gw = gw + gw' ; # symmetrize gradients
      w = w + eta * (gw - alpha * w); # make step
endfor
```

Continuous-time continuous Hopfield network

- We can replace the state variables with continuous-time variables
- At time *t* we compute instantaneous activations

$$a_i(t) = \sum_j w_{ij} x_j(t)$$

• The neuron response is governed by a differential equation

$$\frac{d}{dt}x_i(t) = -\frac{1}{\tau}(x_i(t) - h(a_i))$$

 \circ For steady a_i the neuron response goes to stable state

Hopfield networks for optimization problems

- Optimize function under constraints
- The stable states will be the optimal solution
- Weights must ensure valid and optimal solutions

Figure 42.10. Hopfield network for solving a travelling salesman problem with K=4 cities. (a1,2) Two solution states of the 16-neuron network, with activites represented by black = 1, white = 0; and the tours corresponding to these network states. (b) The negative weights between node B2 and other nodes; these weights enforce validity of a tour. (c) The negative weights that embody the distance objective function.

Hopfield networks is all you need

- Retrieving from stored memory patterns
- Update rule as in the attention mechanism in transformer networks

Ramsauer et al., 2020